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The paper presents general boundary element approach for analysis of thermoelectroelas-
tic (pyroelectric) solids containing shell-like electricity conducting permittive inclusions.
The latter are modeled with opened surfaces with certain boundary conditions on their
faces. Rigid displacement and rotation, along with constant electric potential of in-
clusions are accounted for in these boundary conditions. Formulated boundary value
problem is reduced to a system of singular boundary integral equations, which is solved
numerically by the boundary element method. Special attention is paid to the field sin-
gularity at the front line of a shell-like inclusion. Special shape functions are introduced,
which account for this square-root singularity and allow accurate determination of field
intensity factors. Numerical examples are presented.
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1. Introduction

Nowadays thermoelectroelastic (pyroelectric) materials and smart structures are
widely used in modern technologies, since they allow monitoring of internal state
and self-tuning, serve as sensors and actuators, positioning devices etc. These useful
features of such materials are due to the ability of coupling of mechanical, electric
and thermal fields, which is caused by internal structure of the material (molecular
or composite). There is wide range of experimental and theoretical studies of pyro-
electric materials and their applications [1]. Particular interest is paid to fracture
of piezoelectric solids [2] under the action of mechanical and electric loading.

The boundary element method (BEM) is one of the most prospective approaches
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in fracture mechanics analysis, since it requires only boundary mesh and allows ob-
taining very accurate values of field intensity factors due to simple accounting for
square-root singularity. A number of works address 3D fracture mechanics un-
der piezoelectric, piezomagnetic and magnetoelectroelastic coupling. Furthermore,
there exists another class of field concentrators, which has similar square-root sin-
gularity on its front and is commonly referred as an anti-crack or a rigid shell
inclusion. Such inhomogeneities can model internal electrodes, which control or
inform about the state of a smart solid. There are not so much publications con-
cerning anti-cracks in anisotropic solids comparing to crack problems. Fabrikant [3]
et al. provided the analysis of transversely-isotropic half-space containing a crack
or inclusion under the action of a rigid punch. Kaczyński and Koz lowski [4] studied
thermal stress in elastic medium containing flat rigid inclusion. Kaczyński [5, 6]
and Kaczyński & Kaczyński [7] extended these results to transversely isotropic and
pyroelectric medium. Kirilyuk [8] provided the analysis of a penny-shaped crack
opened by rigid inclusion.

Nevertheless, to the best of authors’ knowledge there are no publications con-
sidering non-flat rigid shell-like inclusions in pyroelectric solids. Another issues
arising considering rigid inclusions is their ability to move and rotate, which is not
always accounted for in the anti-crack boundary conditions. Therefore, this paper
is focused on the development of a solid boundary element approach for analysis of
field intensity caused by rigid electricity-conducting shell-like inclusions of arbitrary
smooth shape.

2. Governing equations of heat conduction and thermoelectroelasticity

According to [9], in a fixed Cartesian coordinate system Ox1x2x3 the equilibrium
equations, the Maxwell equations (Gauss theorem for electric and magnetic fields),
and the balance equations of heat conduction in the steady-state case can be pre-
sented in the following compact form:

σ̃Ij,j + f̃I = 0 hi,i − fh = 0 (1)

where the capital index varies from 1 to 4, while the lower case index varies from
1 to 3, i.e. I = 1, 2, 3, 4. i = 1, 2, 3. Here and further the Einstein summation
convention is used. A comma at subscript denotes differentiation with respect to
a coordinate indexed after the comma, i.e. ui,j = ∂ui/∂xj .

In the assumption of small strains and fields’ strengths the constitutive equations
of linear thermoelectroelasticity in the compact notations are as follows [9]:

σ̃Ij = C̃IjKmũK,m − β̃Ijθ, hi = −kijθ,j (2)

where:

ũi = ui, ũ4 = ϕ, ũ5 = ψ ; f̃i = fi, f̃4 = −q
σ̃ij = σij , σ̃4j = Dj

C̃ijkm = Cijkm, C̃ij4m = emij , C̃4jkm = ejkm, C̃4j4m = −κjm
β̃ij = βij , β̃4j = −χj (i, j, k,m = 1, 2, 3)

(3)

σij is a stress tensor; fi is a body force vector; Di is an electric displacement
vector; q is a free charge volume density; hi is a heat flux; fh is a distributed
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heat source density; ui is a displacement vector; ϕ is an electric potential; θ is
a temperature change with respect to the reference temperature; Cijkm are the
elastic stiffnesses (elastic moduli); kij are heat conduction coefficients; eijk are
piezoelectric constants; κij are dielectric permittivities; βij , χi are thermal moduli
and pyroelectric coefficients, respectively.

Thus, the problem of linear thermoelectroelasticity is to solve partial differen-
tial equations (1) and (2) under the given boundary conditions and volume loading.
Since electro-mechanical fields do not influence temperature field in the considered
problem (uncoupled thermoelectroelasticity) the first step is to solve the heat con-
duction equation and the second one is to determine mechanical and electric fields
acting in the solid.

3. Problem formulation and boundary integral equations

Consider a pyroelectric solid B containing smooth shell-like rigid electricity conduct-
ing inclusions Sk (k = 1, ..., n) (Fig. 1). The latter can be either thermally insulated
or perfectly heat conductive. It is assumed that inclusions are perfectly bonded with
the medium. On the surface ∂B of the solid B either type I (heat flux, stress, electric
displacement), or type II (temperature, displacement, electric potential) or mixed
boundary conditions are given. Volume loading can be also present.

Figure 1 The sketch of the problem

First consider boundary conditions at surfaces Sk of the medium, which model shell-
like rigid inclusions. Since uncoupled thermoelectroelasticity is considered, heat
conduction boundary conditions can be considered independently of pyroelectric
ones.

In the case of thermally insulated inclusions heat flux is zero at their faces, thus
accounting for the perfect bonding of inclusions boundary conditions at surfaces Sk

can be written as:

Σhn (x0) = 0, ∆hn (x0) = 0 ∀x0 ∈ Sk (4)
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where Σf = f+ + f−; ∆f = f+ − f−; hn = hini; Σhn = h+i n
+
i + h−i n

−
i =(

h+i − h−i
)
n+i ; n+ (x) = −n− (x) are unit outwards normal vectors to the faces S+

k

and S−
k of the mathematical cut Sk (slit surface Sk inside a solid B); boundary

values denoted with superscripts “+” and “–” corresponds to appropriate faces.
In the case of perfectly heat conductive inclusions it is assumed that their tem-

peratures are constant, therefore, boundary conditions on S+
k and S−

k write as:

∆θ (x0) = 0,
1

2
Σθ

(
xk0

)
= θ0k ∀xk0 ∈ Sk (k = 1, ..., n) (5)

where θ0k is a temperature of the k-th inclusion. Additionally inclusion can generate
or absorb heat, which can be mathematically written through their heat balance
equations as: ∫∫

Sk

Σhn (x) dS (x) −Hk
0 = 0 (k = 1, ..., n) (6)

where Hk
0 is the constant heat (actually heat generation rate) applied to the k-th

inclusion. The minus sign in Eq. (6) is due to the contact conditions, since hn on
the inclusion is opposite to those on a medium.

Since rigid inclusions considered are not fixed, the displacements at surfaces Sk

are given through the following kinematic equations:

1

2
Σui

(
xk

)
= uki +εijmω

k
j x

k
m, ∆ui

(
xk

)
= 0 ∀xk ∈ Sk (k = 1, ..., n) (7)

where uki is a rigid displacement of the k-th inclusion and ωk
j is its rigid rotation

about the origin; εijm is the permutation tensor.
Electric potential is assumed to be constant to model electrostatics of electricity-

conducting inclusion:

1

2
Σϕ

(
xk

)
= ϕk0 ,∆ϕ

(
xk

)
= 0 ∀xk ∈ Sk (k = 1, ..., n) (8)

where ϕk0 is an electric potential of the k-th inclusion.
Introducing extended permutation tensor ε̃Ijm, which equals to permutation

tensor if I ≤ 3 and is zero otherwise:

ε̃Ijm =

{
εIjm I ≤ 3

0 otherwise
(9)

one can reduce Eqs. (7) and (8) to the following compact form:

1

2
ΣũI

(
xk

)
= ũkI + ε̃Ijmω

k
j x

k
m, ∆ũI

(
xk

)
= 0 ∀xk ∈ Sk (k = 1, ..., n) (10)

where ũkI are unknown extended displacements of the k-th inclusion.
Additionally inclusions can be loaded with some extended forces and couples.

Therefore, their models should be accompanied with equilibrium equations, which
write as: ∫∫

Sk

Σt̃I (x) dS (x) − P̃ k
I = 0 (11)
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Sk

εijmxjΣtm (x) dS (x) −Mk
i = 0 (k = 1, ..., n) (12)

where P̃ k
I and Mk

i are extended forces and couples applied to the k-th inclusion,
respectively.

According to [9], solution of partial differential equations (1) and (2) for a solid
with a system of internal opened surfaces, on which some boundary conditions are
set, is reduced to the following boundary integral equations of heat conduction and
thermoelectroelasticity:

1

2
Σθ (x0) =

∫∫
S

Θ∗ (x, x0) Σhn (x) dS (x)

−CPV
∫∫

S

H∗ (x, x0) ∆θ (x) dS (x) (13)

−
∫∫∫

B

Θ∗ (x, x0) fh (x) dV (x)

1

2
ΣũI (x0) =

∫∫
S

UIJ (x, x0) Σt̃J (x) dS (x)

−CPV
∫∫

S

TIJ (x, x0) ∆ũJ (x) dS (x)

+

∫∫
S

[RI (x, x0) ∆θ (x) + VI (x, x0) Σhn (x)] dS (x) (14)

+

∫∫∫
B

UIJ (x, x0) f̃J (x) dV (x) −
∫∫∫

B

VI (x, x0) fh (x) dV (x)

where x0 ∈ S; S =
∪

k Sk

∪
∂B; and Σθ = ∆θ = θ, Σhn = ∆hn = hn, ΣũI =

∆ũI = ũI , Σt̃I = ∆t̃I = t̃I on ∂B; CPV stands for the Cauchy Principal Value of
the integral. The kernels of Eqs. (13) and (14) are derived in Ref [10].

Thus, the problem is reduced to solution of boundary integral equations (5), (6),
(10)–(14) for determination of unknown heat flux and extended stress discontinuities
(Σhn and ΣtI) on surfaces Sk and extended rigid displacements and rotations of
inclusions.

However, prior to solution of these equations one should note that in 2D case
(plane strain) sought field discontinuities possess square root singularity at inclu-
sion’s tip [11]. These results can be naturally extended on 3D case of a rigid shell-like
inclusion with a smooth front line of a curvature radius RC (A), since one can always
select some domain surrounding point A (see Fig. 2) in front of the inclusion such
that its characteristic size ε≪ RC (A), thus one can neglect inclusion’s front curva-
ture 1/RC (A), and the solution of the problem can be presented as a superposition
of plane strain and out-of-plane strain.

Therefore, according to [11] extended stress field in front of the inclusion in
a local coordinate system Aτnm ∼ Ax1x2x3 (Fig. 2) is defined as:

σ̃1 = [σ̃i1] = 2√
2π
Im

{
B
⟨
p∗Z

−1/2
∗

⟩
ATk̃(2)

}
σ̃2 = [σ̃i2] = −2√

2π
Im

{
B
⟨
Z

−1/2
∗

⟩
ATk̃(2)

} (15)
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where
⟨
Z

−1/2
∗

⟩
= diag

[
(x1 + p1x2)

−1/2
, ..., (x1 + p4x2)

−1/2
]
; matrices A, B and

constants pα (α = 1, ..., 4) are determined from the Stroh eigenvalue problem [12];

and extended field intensity factor vector k̃(2) =
[
K

(2)
12 ,K

(2)
22 ,K32,K42

]T
is defined

as:

k̃(2) = − lim
x→x(A)

√
πs (x)

2
Σt̃ (x) (16)

Extended stress discontinuity Σt̃ in Eq. (16) is computed in a local coordinate
system Aτnm ∼ Ax1x2x3 (Fig. 2).

Figure 2 Inclusion’s front line

Since according to Eq. (15) local singular extended stress field is completely defined
by field intensity factors k̃(2), the latter are considered as sought values in the
solution of formulated problem.

In addition to extended stress field intensity, heat flux also possesses square root
singularity, thus heat flux intensity factors are determined through the following
relations [9]:

Kh1 = − lim
x→x(A)

√
π

8s (x)
kt∆θ (x) , Kh2 = − lim

x→x(A)

√
πs (x)

2
Σhn (x) (17)

where kt =
√
kττknn − k2τn; kττ = kijτiτj , knn = kijninj , kτn = kijτinj .

4. Boundary element solution strategy. Determination of field inten-
sity factors

4.1. Boundary element mesh and special shape functions

For the boundary element solution of derived boundary integral equations for a par-
ticular problem the surface ∂B of the solid along with inclusion surfaces Sk are
meshed with quadrilateral quadratic discontinuous boundary elements. The lo-
cal curvilinear coordinate system Oξη is associated with each boundary element,
moreover, −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1. The collocation points are placed at nodes
ξ = (−2/3; 0; 2/3); η = (−2/3; 0; 2/3). Therefore, there are 9 collocation points
associated with each boundary element.
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Boundary conditions along with unknown boundary and discontinuity functions
are interpolated within the collocation points at each boundary element ΓN as:

bN (ξ, η) =

3∑
i=1

3∑
j=1

bi,jN ϕi (ξ)ϕj (η) (18)

where b =
(
∆θ,Σhn,∆ũI ,Σt̃I

)T
, and the discontinuous shape functions are given

as [13]:

ϕ1 (ξ) = ξ

(
9

8
ξ − 3

4

)
, ϕ2 (ξ) =

(
1 − 3

2
ξ

)(
1 +

3

2
ξ

)
, ϕ3 (ξ) = ξ

(
9

8
ξ +

3

4

)
(19)

Special shape functions are used for the heat flux discontinuity function Σhn
and extended stress discontinuity function Σt̃I at the inclusion’s front boundary
elements:

ϕΣi (ξ) =
1√

1 ± ξ

ΦΣ
i1 +

3∑
j=2

ΦΣ
ij (1 ± ξ)

j−1

 (20)

which allow to capture square-root singularity (16), (17) arising at inclusion’s front
line.

Substituting Eqs. (18)–(20) into the boundary integral equations (5), (6), (10)–
(14) one obtains the system of linear algebraic equations for unknown nodal values of
sought discontinuity functions. Techniques for evaluation of arising regular, weakly
and strongly singular integrals are explicitly described in [9].

4.2. Determination of field intensity factors

Consider a local coordinate system at a point A of the inclusion front (Fig. 2). The
axes of this system are defined by three unit orthogonal vectors n, m, τ , where n is
a normal to inclusion surface; m is a tangent to the inclusion front curve at A, and
τ = n ×m. Without loss in generality consider that the boundary element, which
the point A belongs to, models inclusion front line with its side ξ = 1.

Normal and tangent vectors are defined as:

n =

(
∂x

∂ξ
× ∂x

∂η

)/∣∣∣∣∂x∂ξ × ∂x

∂η

∣∣∣∣;m = −∂x
∂η

/∣∣∣∣∂x∂η
∣∣∣∣ (21)

where x (ξ, η) is a position vector, which defines the surface of the boundary element.
Then according to Eq. (24) the extended traction discontinuity function Σt̃∗ (x) in
the local coordinate system Aτnm on the considered boundary element is equal to:

Σt̃∗ (x) = Ω

3∑
i=1

3∑
j=1

Σt̃(i,j)ϕΣi (ξ)ϕj (η) (22)

where Σt̃(i,j) are the nodal values of the extended traction discontinuity function,
and Ω is the rotation matrix.

Expanding s (x) in Eqs. (16), (17) into Taylor series at the vicinity of A one
obtains:

s = (1 − ξ) ρ (ηA) +O
(

(1 − ξ)
2

; (ηA − η)
2
)

(23)
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where:

ρ (ηA) = τ · ∂x
∂ξ

∣∣∣∣
ξ=1,η=ηA

(24)

Substituting (20) and (23) into (16) and evaluating the limit one obtains:

k̃(2) = −
√
πρ (ηA)

2
Ω

3∑
i=1

3∑
j=1

Σt̃(i,j)ΦΣ
i1ϕj (ηA) (25)

which is the formula implemented in the present BEM for precise evaluation of the
field intensity factors.

The same way the generalized heat flux intensity factors can be evaluated as:

Kh2 = −
√
πρ (ηA)

2

3∑
i=1

3∑
j=1

Σh(i,j)n ΦΣ
i1ϕj (ηA) (26)

5. Numerical example

Consider a transversely isotropic pyroelectric barium titanate (BaTiO3), which has
the following properties [14]:

• elastic moduli (GPa):

C11 = C22 = 150; C33 = 146; C12 = C13 = C23 = 66; C44 = C55 = 44;
C66 = (C11 − C12) /2 = 42;

• piezoelectric constants (C/m2):

e31 = e32 = −4.35; e33 = 17.5; e15 = e24 = 11.4;

• dielectric constants (nF/m):

κ11 = κ22 = 9.86775; κ33 = 11.151;

• heat conduction coefficients (W/(mK)):

k11 = k22 = k33 = 2.5;

• thermal expansion coefficients (K−1):

α11 = α22 = 8.53 · 10−6; α33 = 1.99 · 10−6;

• pyroelectric constants (GV/(mK)):

λ3 = 13.3 · 10−6.

The medium contains a shell-like inclusion, which surface is given by the follow-
ing equation of elliptic paraboloid of revolution:

x3 = ρ
(
x21 + x22

)
, x21 + x22 ≤ R2 (27)

where ρ and R are constants (if ρ = 0 one obtains a penny-shaped inclusion of
a radius R). Properties of the medium are the same as in the previous subsection.

The inclusion is meshed with only 12 quadrilateral discontinuous boundary ele-
ments. Four central boundary elements use general quadratic shape functions (19),
while other elements utilize special shape functions (20) to account for the square
root singularity of stress and heat flux at the inclusion front.
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Figure 3 Field intensity factors on the front line of the inclusion

Since due to tertiary pyroelectricity [15] uniform heat flow can produce unbounded
stress in infinite pyroelectric solid, the examples presented in [7] are not considered
here, because they require additional studies. In turn, in this example the medium is
loaded with two point heat sources H0 and −H0 placed at the points x1 = (0; 0;R)

T

and x2 = (0; 0;−R)
T

, respectively. Thus, the volume integrals in Eqs. (13), (14)
reduce to: ∫∫∫

B

Θ∗ (x, x0) fh (x) dV (x) = H0 (Θ∗ (x1, x0) − Θ∗ (x2, x0)) (28)

∫∫∫
B

VI (x, x0) fh (x) dV (x) = H0 (VI (x1, x0) − VI (x2, x0)) (29)

and one obtains truly boundary integral equations, which can be solved with the
proposed approach. The results for field intensity factors on inclusion front line are

presented in Fig. 3. Normalization factors are equal to Kσ = H0β11
√
π
/(

k11
√
R
)

,

Kχ = H0χ3
√
π
/(

k11
√
R
)

, Kh0 = − 2H0√
πR3

.
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Fig. 3 shows obvious result that for a penny-shaped inclusion (ρ = 0) temper-
ature field is not affected (Kh2 = 0), since in the considered symmetric problem
θ (x1, x2, 0) = 0. Symmetry also causes zero values of the field intensity factor K12

in this case. However, due to thermal expansion and pyroelectric effect field in-
tensity factors K22 and K42 are nonzero. With the increase of inclusion curvature
(increase in ρ) field intensity factors increase in their magnitude, and K22 even
changes its sign. Heat flux intensity factor Kh2 possesses non-monotonic behavior
in its dependence on ρ.

Since the inclusion rotation axis is perpendicular to the material isotropy plane,
field intensity factors possess rotational symmetry, and their polar plots are con-
centric circles (however, due to approximation of the inclusion surface by quadratic
boundary elements some of the plots look like polygons; nevertheless, the deviation
of the results is less then 0.5%).
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